

- 11. Show that (a) $\cosh z = \cosh x \cos y + i \sinh x \sin y$ (b) $\sinh z = \sinh x \cos y + i \cosh x \sin y$
- 12. State and prove Stoke's theorem.
- 13. Find the Fourier series of the function $f(x) = \begin{cases} 0, & \text{if } -2 < x < -1 \\ k, & \text{if } -1 < x < 1 \\ 0, & \text{if } 1 < x < 2 \end{cases}$ 14. Verify Cayley-Hamilton theorem for the matrix $\begin{pmatrix} 1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ and find its inverse.

ĺ	X	0	1	2	3	4	
	У	1	1.8	3.3	4.5	6.3	
<u>PART – C</u>							
Answer any FOUR questions:(4 x 12.5 = 50 Marks)							
16.	(a) State and p	prove Cauchy's	integral theorem	m.		(4.5)	
	(b) Using Cau	uchy's integral	formula, evalua	te $\frac{z^2+1}{z^2-1}dz$ co	ounterclockwise	e around the cir	cle
	z-1 =1.			21			(4)
(c) Evaluate $\frac{z^4 - 3z^2 + 6}{(z+i)^3} dz$ counterclockwise around a unit circle with centre at the origin.							
		(2+1)					(4)
17. (a) Prove that $\mathbf{F} = 0$, where \mathbf{F} is a three dimensional vector in Cartesian coordinates. (4)							
	(b) Verify Ga 0 $x, y, z \leq$	auss-divergence 1.	e theorem for the	e vector $A = x^2$	$i + y^2 j + z^2$	k taken over the	(8.5)
18.	(a) Find the I(b) Evaluate	Fourier cosine a $\frac{1}{0} \frac{\omega \sin 3\omega}{\omega^2 + 9} d$	nd sine integral $l\omega$	of $f(x) = e^{-kx}$	x where $x > 0$	0, <i>k</i> > 0.	(11) (1.5)
19.	Find the eigen	values and eig	en vectors of $\begin{pmatrix} - \\ - \end{pmatrix}$	$ \begin{array}{ccc} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{array} $			(5+7.5)
20.	Find the soluti 27 x + 6 y - 6x + 15 y + x + y + 54 z using Gauss-S	fon to four decin z = 85 2 z = 72 z = 110 Seidel method.	mals, of the syst	em			
\$\$\$\$\$\$							

15. Fit a straight line by method of least squares for the following data