B.Sc. DEGREE EXAMINATION - PHYSICS

THIRD SEMESTER - NOVEMBER 2013
PH 3506 - MATHEMATICAL PHYSICS

Date : 06/11/2013
Dept. No. \square Max. : 100 Marks

$\underline{\text { PART - A }}$

Answer ALL questions:

(10×2 = 20 Marks)

1. Find the square root of $-15-8 i$.
2. Verify that $e^{-x}(\cos y-i \sin y)$ is analytic.
3. Find a unit normal vector of the cone of revolution $z^{2}=4\left(x^{2}+y^{2}\right)$ at the point $(1,0,2)$.
4. State Green's theorem in the plane.
5. Check whether $\sin 2 x \sin 3 x$ is orthogonal in the interval $(-\pi, \pi)$.
6. What are odd and even functions?
7. Show that $\left(\begin{array}{cc}1 / \sqrt{2} & i / \sqrt{2} \\ -i / \sqrt{2} & -1 / \sqrt{2}\end{array}\right)$ is Hermitian.
8. Determine the rank of a matrix $\left(\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1\end{array}\right)$
9. Using Lagrange's interpolation formula, find $y(10)$ from the following data

x	5	6	9	11
y	12	13	14	16

10. Using Simpson's one third rule, evaluate $\int_{0}^{1} y d x$ from the following data

x	0	0.25	0.50	0.75	1.00
y	1.0000	0.8000	0.6667	0.5714	0.5000

PART - B

Answer any FOUR questions:

($4 \times 7.5=30$ Marks)
11. Show that (a) $\cosh z=\cosh x \cos y+i \sinh x \sin y$
(b) $\sinh z=\sinh x \cos y+i \cosh x \sin y$
12. State and prove Stoke's theorem.
13. Find the Fourier series of the function $f(x)=\left\{\begin{array}{l}0, \text { if }-2<x<-1 \\ k, \text { if }-1<x<1 \\ 0, \text { if } 1<x<2\end{array}\right.$
14. Verify Cayley-Hamilton theorem for the matrix $\left(\begin{array}{ccc}1 & 2 & 0 \\ 2 & -1 & 0 \\ 0 & 0 & 1\end{array}\right)$ and find its inverse.
15. Fit a straight line by method of least squares for the following data

x	0	1	2	3	4
y	1	1.8	3.3	4.5	6.3

PART - C

Answer any FOUR questions:

($4 \times 12.5=50$ Marks $)$
16. (a) State and prove Cauchy's integral theorem.
(b) Using Cauchy's integral formula, evaluate $\oint \frac{z^{2}+1}{z^{2}-1} d z$ counterclockwise around the circle $|z-1|=1$.
(c) Evaluate $\oint \frac{z^{4}-3 z^{2}+6}{(z+i)^{3}} d z$ counterclockwise around a unit circle with centre at the origin.
17. (a) Prove that $\nabla . \nabla \times \mathbf{F}=0$, where \mathbf{F} is a three dimensional vector in Cartesian coordinates.
(b) Verify Gauss-divergence theorem for the vector $\vec{A}=x^{2} \vec{\imath}+y^{2} \vec{\jmath}+z^{2} \vec{k}$ taken over the cube $0 \leq x, y, z \leq 1$.
18. (a) Find the Fourier cosine and sine integral of $f(x)=e^{-k x}$ where $x>0, k>0$.
(b) Evaluate $\int_{0}^{\infty} \frac{\omega \sin 3 \omega}{\omega^{2}+9} d \omega$
19. Find the eigen values and eigen vectors of $\left(\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right)$
20. Find the solution to four decimals, of the system
$27 x+6 y-z=85$
$6 x+15 y+2 z=72$
$x+y+54 z=110$
using Gauss-Seidel method.

